В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
dimon5434
dimon5434
07.03.2023 07:13 •  Алгебра

1) log 1/3( 2-3x)/x > -1 (больше либо равно) 2) 2log(по основанию 2)(x-1) -log(по основанию 2)( 2x-4)> 1

Показать ответ
Ответ:
Anhard23
Anhard23
05.07.2020 11:22
1) log(1/3)(2 - 3x) ≥ log(1/3)(3)
Т.к. основания логарифмов меньше 1 (0<1/3<1), то подлогарифмические выражения сравниваются обратным знаком:
2 - 3x ≤ 3
-3x ≤ 3 - 2
-3x ≤ 1
x ≥ -1/3
ОДЗ: 2 - 3x >0, x<2/3
ответ: x∈[-1/3;2/3)
2) ОДЗ: x - 1> 0, 2x - 4>0; x>1, x>2. Общее решение: x>2
log2(x-1)^2 - log2(2x - 4) > log2(2)
log2( (x-1)^2 / (2x - 4)) > log2(2)
2>1, значит  подлогарифмические выражения сравниваются тем же знаком:
(x-1)^2 / (2x - 4) > 2
(x^2 - 2x + 1 - 4x + 8)/(2x - 4) >0
(x^2 - 6x + 9)/(2x - 4) > 0
Числитель всегда больше нуля: x^2 - 6x + 9 = (x-3)^2
Значит нужно, чтобы знаменатель был положительным:
2x - 4 >0, x>2
ответ: x∈(2; +бесконечность)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота