1. разложите по соответствующей формуле cos(x+π/6) 2. известно, что sinx=4/5 и x e (π/2; π). найдите: sin2x 3. представьте в виде разности тригонометрических функций: - sinα / (sin2α cos3α) 4. представьте в виде произведения тригонометрических функций: sin11x +sin5x 5. вычислите ( ctg2(π/8) – 1 ) / (2ctg(π/8))
смотри решение во вложении
1-2-3-4-5
1 формула сложения
Cos (x+п/6) = cosx * cos(п/6) – sinx*sin(п/6)=1/2 cosx - √3/2sinx
2 формула двойного угла
Sinx=4/5 ; cos2x = 1- sin2x = 1-(4/5)2 =1-16/25=9/25 ; cosx =3/5
Sin2x = 2*sinx*cosx =2*4/5*3/5=24/25
3 формула двойного /тройного угла
-sina /(sin2a*sin3a) =
=-sin(3a-2a) /(sin2a*sin3a) =
=- (ctg2a – ctg3a) = ctg3a – ctg2a
4 11x =8x+3x ; 5x =8x -3x
sin11x +sin5x =2*1/2 (sin(8x+3x)+sin(8x-3x)) =2*sin8x*cos3x
5 формула двойного угла
(ctg^2(п/8)-1) / (2ctg(п/8)) = ctg (2*п/8) = ctg (п/4)=ctg 45o =1