1. Решите неравенства. Соотнесите свои ответы с названиями промежутков.
1) х 2 +2х+10 ˃ 0;
2) х 2 -12х+36 ≤ 0;
3) х 2 +3х+2 ≥ 0;
4) х 2 - 9 ≤ 0;
a) Неравенство не имеет решений
b) Решением неравенства является вся числовая прямая
c) Решением неравенства является одна точка.
d) Решением неравенства является закрытый промежуток.
e) Решением неравенства является открытый промежуток.
f) Решением неравенства является объединение двух промежутков.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара