1 вариант Укажите номера верных утверждений: 1. В любом прямоугольнике диагонали взаимно перпендикулярны. 2. Существует квадрат, который не является ромбом. 3. Диагонали квадрата взаимно перпендикулярны. 4. Сумма углов выпуклого четырехугольника равна 180°. 5. Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°. 6. Диагонали квадрата делят его углы пополам. 7. Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм. 8. Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 9. Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб. 10. Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°. 11. Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°. 12. Если площади фигур равны, то равны и сами фигуры. 13. Площадь трапеции равна произведению суммы оснований на высоту. 14. Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10. 15. Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10. 16. Если диагонали ромба равны 3 и 4, то его площадь равна 6. 17. Площадь трапеции меньше произведения суммы оснований на высоту. 18. Площадь прямоугольного треугольника меньше произведения его катетов. 19. Если в ромбе один из углов равен 90°, то такой ромб — квадрат. 20. Площадь трапеции равна половине высоты, умноженной на разность оснований. 21. Площадь прямоугольного треугольника равна половине произведения его катетов. 22. Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат. 23. Диагонали прямоугольника равны. 24. У любой трапеции боковые стороны равны. 25.Диагональ трапеции делит её на два равных треугольника. 26. Диагонали ромба перпендикулярны. 2 вариант Укажите номера верных утверждений: 1. Диагонали квадрата делят его углы пополам. 2. Площадь трапеции равна произведению суммы оснований на высоту. 3. Площадь прямоугольного треугольника меньше произведения его катетов. 4. Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 5. Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат. 6. Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10. 7.Диагональ трапеции делит её на два равных треугольника. 8. В любом прямоугольнике диагонали взаимно перпендикулярны. 9. Площадь трапеции равна половине высоты, умноженной на разность оснований. 10. Если диагонали ромба равны 3 и 4, то его площадь равна 6. 11. Диагонали ромба перпендикулярны. 12. Сумма углов выпуклого четырехугольника равна 180°. 13. Площадь прямоугольного треугольника равна половине произведения его катетов. 14. Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°. 15. Если в ромбе один из углов равен 90°, то такой ромб — квадрат. 16. Диагонали квадрата взаимно перпендикулярны. 17. У любой трапеции боковые стороны равны. 18. Если площади фигур равны, то равны и сами фигуры. 19. Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°. 20. Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб. 21. Диагонали прямоугольника равны. 22. Существует квадрат, который не является ромбом. 23. Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10. 24. Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°. 25. Площадь трапеции меньше произведения суммы оснований на высоту. 26. Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.
Абсолютная погрешность равна модулю разницы между точным и округленным числом.
Относительная погрешность равна абсолютной, деленной на приближенное значение, выраженное в процентах.
1.
1) 5,4 = 5. Абс = 5,4-5 = 0,4. Отн = 0,4:5,4*100% = 7,4%
2) 7,9 = 8. Абс = 8-7,9 = 0,1. Отн = 0,1:7,9*100% = 1,27%
3) 1,89 = 2. Абс = 2-1,89 = 0,11. Отн = 0,11:1,89*100% = 5,82%
4) 8,5 = 9. Абс = 9-8,5 = 0,5. Отн = 0,5:8,5*100% = 5,88%
5) 3,71 = 4. Абс = 4-3,71 = 0,29. Отн = 0,29:3,71*100% = 7,82%
6) 11,27 = 11. Абс = 11,27-11 = 0,27. Отн = 0,27:11,27*100% = 2,4%
2.
1) 8,79 = 0. Абс = 9-8,79 = 0,21
2) 0,777 = 0,8. Абс = 0,8-0,777 = 0,023
3) 132 = 130. Абс = 132-130 = 2
4) 1,23 = 1,23. Абс = 1,23-1,23 = 0.
5/ (1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9
3/ (a+b)* ( x²+x+1)
Объяснение:
2) P = a+b+с = 3x²y + 8x-9y + 4x²y+3x²y+4x = 10x²y+12x-9y
10x²y¹ ⇒ 2+1 = 3 степень
4) V = 1400 м³ = 1,4*10³ м³
n = 2.7*10⁷ м⁻³
N = nV = 2.7*10⁷ м⁻³ * 1,4*10³ м³ ≈3.8*10¹⁰
6) P = 4a
S = a²
S₁/S₂ = 25
S₁/S₂ = (a₁/a₂)² = 25
a₂ = a₁/5
P₁/P₂ = 4a₁/4a₂ = a₁/a₂ = 5
P₂ = P₁/5
уменьшится в 5 раз
1-го нет. 3 и 5 не понятно что там в условии за знаки
по 5 мне кажется там так:
(1/4)⁻¹ * (-8/9)⁰* (1/3)² / 4 = 4/4 * 1 * 1/9 = 1/9
3-й я думаю там так ax² + bx² + bx + ax + a +b =x²(a+b) + x(a+b) + (a+b) = (a+b)* ( x²+x+1)