C даного равенства следует, что х=0 и х=1 будут корнями искомого многочлена. Поєтому Р(х) имеет вид P(x)=x(x-1)Q(x), где - Q(x) некоторый многочлен. Подставив это в данное равенство, получим
xР(х-1)=(х-2)Р(х);
x *(x-1)(x-1-1)Q(x-1)=(x-2)x(x-1)Q(x);
x(x-1)(x-2)Q(x-1)=x(x-1)(x-2)Q(x);
т.е.получили что Q(x-1)=Q(x). Отсюда имеем что Q(0)=Q(1)=Q(2)=, поэтому Q(x) - есть просто сталой.
Далее. Рассмотрим полученный ответ P(x)=ax(x-1), a є R. Сделаем проверку.
x* a(x-1)(x-2)=(x-2) ax(x-1)
а значит любой многочлен P(x)=ax(x-1), a є R удовлетворяет данное равенство
mn+22=5m
n + 22/m =5
n = 5 - 22/m
Если m, n - натуральные, то очевидно, что число 22/m - также должно быть натуральным, т.е. 22 кратно m =>
m =1; 2; 11; 22. Другие значения m не являются натуральными числами.
Подставив полученные значения m, выберем те, при которых n - также натуральное число^
m = 1: n = 5 - 22 = -17 ∉ N
m = 2; n = 5 - 22/2 = -5 ∉ N
m = 11; n = 5- 22/11 = 3 ∈ N - решение
m = 22: n = 5 - 22/22 = 4 ∉ N - решение
Отсюда: уравнение mn+22=5m в натуральных числах имеет 2 решения (m; n):
(11; 3) и (22; 4)
C даного равенства следует, что х=0 и х=1 будут корнями искомого многочлена. Поєтому Р(х) имеет вид P(x)=x(x-1)Q(x), где - Q(x) некоторый многочлен. Подставив это в данное равенство, получим
xР(х-1)=(х-2)Р(х);
x *(x-1)(x-1-1)Q(x-1)=(x-2)x(x-1)Q(x);
x(x-1)(x-2)Q(x-1)=x(x-1)(x-2)Q(x);
т.е.получили что Q(x-1)=Q(x). Отсюда имеем что Q(0)=Q(1)=Q(2)=, поэтому Q(x) - есть просто сталой.
Далее. Рассмотрим полученный ответ P(x)=ax(x-1), a є R. Сделаем проверку.
x* a(x-1)(x-2)=(x-2) ax(x-1)
а значит любой многочлен P(x)=ax(x-1), a є R удовлетворяет данное равенство