Пусть первый рабочий выполнит работу за х часов, тогда второй выполнит работу за х+10 часов, за час первый рабочий сделает 1\х работы, второй 1\(х+10) работы, за 12 часов первый сделает 12\х работы, второй 12\(х+10) работы, вместе 12\х+12\(х+10) работы, по условию задачи составляем уравнение:
Пусть первый рабочий выполнит работу за х часов, тогда второй выполнит работу за х+10 часов, за час первый рабочий сделает 1\х работы, второй 1\(х+10) работы, за 12 часов первый сделает 12\х работы, второй 12\(х+10) работы, вместе 12\х+12\(х+10) работы, по условию задачи составляем уравнение:
12\х+12\(х+10)=1
Решим:
12*(x+10+x)=x(x+10)
12*(2x+10)=x^2+10x
24x+120-x^2-10x=0
x^2-14x+120=0
(x-20)(x+6)=0, отсюда
x=-6 (что невозможно так как количевство времени нужное на выполнение первым рабочим не может быть отрицательным числом)
или
x=20
х+10=30
ответ: первый сделате работу за 20 часов, второй за 30 часов
1) функция х(t) - закон движения, зависимость пути х от времени t.Скорость - это производная от пути, то есть V(t)=x¹(t)=(1/t+1)¹=-1/t².
Скорость в момент времени t₀=2: V(2)=-1/2²=-1/4.
2)Аналогично находим скорость как производную от пути:
V(t)=x¹(t)=4t³-2.
Скорость равна 1, значит, V(t)=0, 4t³-2=0 ⇒ t³=1/2, t=∛1/2
3) Угловой коэфициент касательной равен производной от функции, вычисленный при х=х₀=π/2.
у¹=-sinx, y¹(π/2)=-sinπ/2=-1, k=-1
4)Такие неравенства решают методом интервалов.Отмечают нули числителя и знаменателя, а потом на интервалах считают знаки ф-ции.
Нули числителя: х=0, 3, -1
Нули знаменателя: х= -3.
ОДЗ: х≠ -3 ⇒ Точка х= -3 будет исключена из множества решений.
+ + + + + + - - - + + + + + +
(-3)(-1)(0)(3)
Теперь выбираем интервалы, где стоит +
х∈(-∞,-3)∨(-3,-1)∨(0,3)∨(3,∞)
Из решения исключались нули числителя, так как знак неравенства строгий, равенство не допускается.