Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч
1 + Sina = Sin²a/2 + 2Sina/2Cosa/2 + Cos²a/2 = (Sina/2 + Cosa/2)²
Второе подкоренное выражение будет иметь вид:
1 - Sina = Sin²a/2 - 2Sina/2Cosa/2 + Cos²a/2 = (Sina/2 - cosa/2)²
То есть мы перешли к половинному углу используя формулы:
1)1 = Sin²a/2 + Cos²a/2 и 2) Sina = 2Sina/2Cosa/2
Теперь получаем:
[√(Sina/2 + Cosa/2)² + √(Sina/2 - Cosa/2)²]/ [√(Sina/2 + Cosa/2)² - √(Sina/2 -
- Cosa/2)² = (Sina/2 + cosa/2 + Sina/2 - cosa/2) / (Sina/2 + Cosa/2 -
- Sina/2 + Cosa/2 ) = (2Sina/2) / (2Cosa/2) = tga/2