sinα•cosβ + cosα•sinβ = sin(α + β)
sinα - sinβ = 2•sin( (1/2)•(α - β) )•cos( (1/2)•(α + β) )
Через одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции
sinα•cosβ + cosα•sinβ = sin(α + β)
sin( π/3 + x ) = cos2xsin( π/3 + x ) - cos2x = 0sin( π/3 + x ) - sin( π/2 - 2x ) = 0sinα - sinβ = 2•sin( (1/2)•(α - β) )•cos( (1/2)•(α + β) )
2•sin( (1/2)•(π/3 + x - π/2 + 2x) )•cos( (1/2)•(π/3 + x + π/2 - 2x) ) = 02•sin( (1/2)•(3x - π/6) )•cos( (1/2)•(-x + 5π/6) ) = 0Произведение равно нулю, если хотя бы один из множителей равен нулю.1) sin( (1/2)•(3x - π/6) ) = 0(1/2)•(3x - π/6) = πn3x - π/6 = 2πn3x = π/6 + 2πnx = π/18 + 2πn/3 , n ∈ Z2) cos( (1/2)•(-x + 5π/6) ) = 0(1/2)•(-x + 5π/6) = π/2 + πk- x + 5π/6 = π + 2πkx = - π/6 + 2πk , k ∈ ZОТВЕТ: π/18 + 2πn/3 , n ∈ Z ; - π/6 + 2πk , k ∈ ZЧерез одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции