Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
ответ: второе выражение. Т.к любое число в квадрате будет либо положительным, либо равным нулю (0^2 = 0), а здесь ещё добавляют 5. Следовательно, даже если q = 0, то выражение будет иметь смысл, ибо мы получим :
17 / 0^2 + 5 = 17 / 5
Объяснение:
Если в первом выражении подставить нуль вместо q, то получим 17 / 0^2 = 17 / 0. На нуль делить нельзя => выражение не имеет смысла
Если в третьем вместо q подставить 5, то получим 17 / 5 - 5 = 17 / 0. На нуль делить нельзя => выражение не имеет смысла.
Если в четвёртом выражении подставить -5 вместо q , то получим
17 / -5 + 5 = 17 / 0 . На нуль делить нельзя => выражение не имеет смысла.
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
ответ: второе выражение. Т.к любое число в квадрате будет либо положительным, либо равным нулю (0^2 = 0), а здесь ещё добавляют 5. Следовательно, даже если q = 0, то выражение будет иметь смысл, ибо мы получим :
17 / 0^2 + 5 = 17 / 5
Объяснение:
Если в первом выражении подставить нуль вместо q, то получим 17 / 0^2 = 17 / 0. На нуль делить нельзя => выражение не имеет смысла
Если в третьем вместо q подставить 5, то получим 17 / 5 - 5 = 17 / 0. На нуль делить нельзя => выражение не имеет смысла.
Если в четвёртом выражении подставить -5 вместо q , то получим
17 / -5 + 5 = 17 / 0 . На нуль делить нельзя => выражение не имеет смысла.