А на кухне три лампочки В люстре и одна светильники над раковиной мощность лампочек в люстрах 60 Вт а светильники 70 Вт предполагается что свет на кухне горит течение часа утром и в течение трех часов вечером Вычислите Сколько денег уйдёт на оплату освещение на кухне за ноябрь при тарифе 547 сотых руб за киловатт-час энергетическую принято измерять кВт часть мощность равна отношению затраченной энергии ко времени работы например за 10 часов работы прибора мощностью 100 Вт тратятся 1 квт-ч энергии B какова будет экономии если заменить все лампочки накаливания на энергосберегающие светодиодные лампы мощностью 10 Вт окупится ли за ноябрь стоимость рекламы Если каждый стоят 90 руб в Что даст большую экономию полный отказ от использования электрического чайника мощностью 2 кВт или вы круче ни одной лампочки мощностью 60 Вт Если сейчас лампа горит примерно 12 часов день осенних используют 5 раз в день по 2 минуты
Рассмотрим функцию
Её область определения:
Приравниваем функцию к нулю:
Произведение равно нулю, если один из множителей равен нулю
На интервале найдем решение неравенства
_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток -
Целое отрицательное число из промежутка: -1
ответ: -1.
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный
Целые отрицательные числа промежутка: -3; -2; -1.
ответ: -3; -2; -1.
Рассмотрим функцию
Область определения:
Приравниваем функцию к нулю:
Дробь обращается в 0 тогда, когда числитель равен нулю
По т. Виета:
Найдем решение неравенства
___+___(-1)___-____(0)____-__(2)____+____
- решение неравенства
Целых отрицательных чисел - НЕТ
ответ: целых отрицательных чисел нет
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю
Дробь обращается в нуль, если числитель равен нулю
Вычислим решение неравенства:
__+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства:
Целые отрицательные решения : -1
ответ: -1.
у`=(6x-3tgx-1,5π +2)`= 6-3·(1/cos²x).
Решим уравнение y`=0
3/cos²x = 6;
cos²x=1/2 ⇒
cosx = - √2/2 или cosx = √2/2
х= ± arccos(- √2/2 )+2πk, k ∈ Z или х= ±arccos(√2/2 )+2πn, n ∈ Z;
х= ±(π - arccos( √2/2 ))+2πk, k ∈ Z или х= ±(π/4)+2πn, n ∈ Z;
х= ±(π- (π/4))+2πk, k ∈ Z.
х= ±(3π/4)+2πk, k ∈ Z.
Указанному отрезку принадлежат два значения π/4 и -π/4
Находим значения самой функции в этих точках и на концах отрезка
и выбираем среди них наибольшее и наименьшее.
у(-π/3)=6·(-π/3)-3tg(-π/3)-1,5π+2=-2π-3·(-√3)-1,5π+2=-3,5π+3√3+2≈-2,32;
у(-π/4)=6·(-π/4)-3tg(-π/4)-1,5π+2=(-3π/2)-3·(-1)-1,5π+2=-3π+3+2=-3π+5≈-4,42
у(π/4)=6·(π/4)-3tg(π/4)-1,5π+2=(3π/2)-3-1,5π+2=-1.
у(π/3)=6·(π/3)-3tg(π/3)-1,5π+2=2π-3·√3-1,5π+2=(π/2)+2-3·√3≈-1,53.
у(-π/4)=5-3π наименьшее значение функции.
у(π/4)=-1 наибольшее значение функции