Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Показать больше
Показать меньше
Juicemonk3000
09.03.2023 10:47 •
Алгебра
Алгебра 9 класс 16.21 по учебнику "МЕКТЕП"
Показать ответ
Ответ:
igorlevocko
12.11.2022 12:55
1. log_0,5(x^2 +x) = -1
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
0,0
(0 оценок)
Ответ:
BOYECH
15.10.2020 09:03
1)
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .
0,0
(0 оценок)
Популярные вопросы: Алгебра
znanija114
27.05.2021 09:35
Выразите переменную х через переменную у в уравнении 7х-3у=21...
mikkie3
30.05.2020 23:14
Разложить на множители : а) 2+b-2b^3 - b^4 б) -с-d+ c^3d + c^4...
podvorskij
11.03.2022 23:48
+Функция задана уравнением y = x2 − 6x + 5; a) В какой точке график данной функции пересекает ось ОY? [1] b) Найдите точки пересечения графика функции с осью ОХ. [2]c) Запишите...
ольга2104
05.01.2022 10:58
Найти числовое значение выражения25a^2-b^2/25a^2-10ab+b^2:(5a^2+ab)*(2b-10a)при a=25,b=49...
krylovadashenk
31.12.2022 13:14
СОЧ не могу сделать! Продолжительность выполнения домашнего задания (в часах) по результатам опроса 30 учащихся приведена в таблице: a) представьте данные в виде интервальной таблицы...
ксззххххх
04.03.2023 16:40
Прочитайте предложения. Укажите, в какой части сложного предложения рассказывается о причине происшедшего, ав какой – говорится о следствии.Расставьте знаки препинания,а) Жизнь...
FayaKuraeva
16.06.2020 17:15
Що потрібно ввести на сторінці поштового сервера, щоб ресурси поштової скриньки стали для вас доступними?...
maserdaser
16.06.2020 17:15
Көкек не себепті ұясыз қалды? Көп қақсағандықтанЖұмыртқа тапқаннанЖалқаулықтың кесіріненАртқаТексеру...
onaleman
25.10.2022 22:43
У меня 30 минут Нужно само решение...
systemka470
25.10.2022 22:43
1-тапсырма Матинди окып мазмун бойынша шагын жоспар курыныз. Сол куни ен адеми аруы атагы ушин 21 умиткер сынга, тусти. Коркине сай каракоз кыздарымыздын барлыгы да женистен умитти....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .