ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
Тут нету ничего сложного, во-первых, запомни четыре главных правила, ведь именно они тебе и понять четна или нечетная, а может быть и ни нечетная и ни четная функция тебе попалась: cos(-x) = cosx sin(-x)= - sinx tg(-x) = - tgx ctg(-x) = - ctgx Теперь, например, возьмем функцию y = 2* sin4x f(x) = 2 * sin(4*(-x)) => f(x) = -2sin4x( т.е. функция поменяла свой знак, следовательно, она нечетная) Но также бывают случаи, когда sinx оказывается четным.Например, y=2*sin^2(x). т.к. синус в квадрате, то, когда мы будем выносить минус из-под него, знак не поменяется, т.к. квадрат С косинусом он всегда будет четным. Бывают случаи, когда функция является ни нечетн. и ни четн. Например: y=sin(x)-x^2 вроде бы функция должна быть не четная, т.к. синус без квадрата, но f(-x) = -sinx-x^2 т.е. функция никакая, т.к. синус поменял свой знак, а икс в квадрате нет.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
cos(-x) = cosx sin(-x)= - sinx tg(-x) = - tgx ctg(-x) = - ctgx
Теперь, например, возьмем функцию y = 2* sin4x
f(x) = 2 * sin(4*(-x)) => f(x) = -2sin4x( т.е. функция поменяла свой знак, следовательно, она нечетная)
Но также бывают случаи, когда sinx оказывается четным.Например, y=2*sin^2(x). т.к. синус в квадрате, то, когда мы будем выносить минус из-под него, знак не поменяется, т.к. квадрат
С косинусом он всегда будет четным.
Бывают случаи, когда функция является ни нечетн. и ни четн.
Например:
y=sin(x)-x^2 вроде бы функция должна быть не четная, т.к. синус без квадрата, но
f(-x) = -sinx-x^2 т.е. функция никакая, т.к. синус поменял свой знак, а икс в квадрате нет.