Пусть числа a,b,c составляют геометрическую прогрессию, тогда b²=ac увеличим второе число на 8,тогда a,b+8,c составляют арифметическую прогрессию ⇒ 2(b+8)=a+c увеличим третье число на 64 ,тогда a,b+8,c+64 составляют геометрическую прогрессию ⇒ (b+8)²=a(c+64)
имеем систему из трех уравнений с тремя неизвестными
b²=ac
увеличим второе число на 8,тогда a,b+8,c составляют арифметическую прогрессию ⇒
2(b+8)=a+c
увеличим третье число на 64 ,тогда a,b+8,c+64 составляют геометрическую прогрессию ⇒
(b+8)²=a(c+64)
имеем систему из трех уравнений с тремя неизвестными
{b²=ac {b²=ac
{2(b+8)=a+c {2b+16=a+c
{(b+8)²=a(c+64) {b²+16b+64=ac+64a
{b²=ac {b²=ac
{c=2b+16-a {c=2b+16-a
{ac+16b+64=ac+64a {b=4a-4
{b²=ac
{c=2(4a-4)+16-a=8a-8+16-a=7a+8
{b=4a-4
(4a-4)²=a(7a+8)
16a²-32a+16=7a²+8a
9a²-40a+16=0
D=1600-576=1024=32²
a=(40+32)/18=4
b=4*4-4=12
c=7*4+8=36
или
a=(40-32)/18=8/18=4/9
b=4*4/9-4=16/9-4=-20/9
c=7*4/9+8=28/9+8=(28+72)/9=100/9
ответ: 4;12;36 или 4/9;-20/9;100/9
Пусть х км/ч - скорость плота, тогда (х+12) км/ч - скорость моторной лодки.
5ч 20 мин=5целых 1/3 ч
Составим уравнение
20/(х+12)=(20/х)-5целых 1/3
20/(х+12)=(20/х)-(16/3)
20*3х=20*3(х+12)-16х*(х+12)
60х=60х+720-16х^2-192х
16х^2-192х-720=0
Разделим всё на 16
х^2+12х-45=0
Решаем квадратное уравнение
Дискриминант уравнения = b 2 - 4ac = 324
х1,2=(-b+-(корень из b 2 - 4ac )/2а
х1,2=(-12+-(корень из 324-4*1*(-45))/2*1
х1,2=(-12+-18)/2
х1=(-12+18)/2=3
х2=(-12-18)/2=-30/2=-15
Отрицательный корень убираем
ответ: скорость плота 3 км/ч
Проверка:
20/(3+12)=(20/3)-16/3
20/15=4/3
4/3=4/3