Графики заданных функций - это прямые линии. Для построения прямой достаточно определить координаты двух точек: у = 2х - 3 Задаём любую координату: например, х = 0 у = 2*0 - 3 = -3. Получили координаты первой точки. Задаём другое значение х = 3 у = 2*3 - 3 = 6 - 3 = 3.
То же самое нужно выполнить для второй прямой: у = -5х + 11 х = 0 у = -5*0 + 11 = 11 х = 4 у = -5*4 + 11 = -20 + 11 = -9.
После построения прямых находится точка их пересечения. Координаты этой точки можно проверить аналитически. Для этого надо решить систему линейных уравнений: у = 2х - 3 у = 2х - 3 у = -5х + 11 -у = 5х - 11 0 =7х - 14 7х = 14 х= 14/7 = 2 у = 2*2 - 3 = 1.
Пятизначные числа начинаются с числа 10000 и заканчиваются числом 99999. Таким образом пятизначных чисел: N = 99999 - 9999 = 90000 Сколько у нас четных цифр от 0 до 9? 4 числа. Сколько различных пятизначных чисел, в которых все числа ченые? На каждое из 5 мест в пятизначном числе можно поставить 4 различных числа. Получаем: 4*4*4*4*4 = 4^5 = 1024 числа. Кстати и на первый вопрос ответ можно дать средствами комбинаторики. Там на первое место можно поставить 9 цифр (ноль нельзя) , а на посследующие 4 по 10 цифр. Итого: 9*10*10*10*10 = 90000
Для построения прямой достаточно определить координаты двух точек:
у = 2х - 3
Задаём любую координату: например, х = 0 у = 2*0 - 3 = -3.
Получили координаты первой точки.
Задаём другое значение х = 3 у = 2*3 - 3 = 6 - 3 = 3.
То же самое нужно выполнить для второй прямой:
у = -5х + 11
х = 0 у = -5*0 + 11 = 11
х = 4 у = -5*4 + 11 = -20 + 11 = -9.
После построения прямых находится точка их пересечения.
Координаты этой точки можно проверить аналитически.
Для этого надо решить систему линейных уравнений:
у = 2х - 3 у = 2х - 3
у = -5х + 11 -у = 5х - 11
0 =7х - 14 7х = 14 х= 14/7 = 2 у = 2*2 - 3 = 1.
N = 99999 - 9999 = 90000
Сколько у нас четных цифр от 0 до 9? 4 числа.
Сколько различных пятизначных чисел, в которых все числа ченые?
На каждое из 5 мест в пятизначном числе можно поставить 4 различных числа. Получаем:
4*4*4*4*4 = 4^5 = 1024 числа.
Кстати и на первый вопрос ответ можно дать средствами комбинаторики. Там на первое место можно поставить 9 цифр (ноль нельзя) , а на посследующие 4 по 10 цифр. Итого:
9*10*10*10*10 = 90000