Автомобиль выехал в город со скоростью 50 км/ч всего пути водитель сделал остановку на 4 минуты. Поэтому, чтобы прибыть в город вовремя, оставшуюся часть пути водитель ехал со скоростью 60км/ч Найдите расстояние, которое автомобиль ехал со скоростью 60 км/ч которое проехал автомобиль
ЦИТАТА:
Средняя скорость равна среднему арифметическому от скоростей тела во время движения, только если тело двигалось с этими скоростями одинаковые промежутки времени. (В случае, если тело двигалось с разными скоростями неодинаковые промежутки времени, среднюю скорость можно вычислить как взвешенное среднее арифметическое этих скоростей с весами, равными соответствующим промежуткам времени.)
В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч.
В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути. (Если участки пути, по которому двигалось тело с разными скоростями, не равны между собой, то средняя скорость будет равна взвешенному среднему гармоническому всех скоростей с весами — длинами соответствующих этим скоростям участков пути.)
в нашем случае расстояние между пристанями не меняется)))
т.е. средняя скорость будет равна среднему гармоническому скоростей по и против течения)))
24 = 2 / (1/(25+х) + 1/(25-х))
12 = 1 / (50/(25² - х²))
12 = (25² - х²) / 50
12*50 = 25² - х²
х² = 25*(25-24) = 25
х = 5 км/час --- скорость течения реки)))
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)