Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
log a (a^2/b) log a (a^2) - log a (b)
5log (b^2)/a (a^2/b)= 5· = 5· =
log a (b^2)/a log a (b^2)-log a (a)
2- 3 (-1)
= 5 = 5 = -1
2·3 -1 5
2) log 2 (a^1/3) , если log 4 (a^3)=9
log 4 (a^3)=9 ⇔3 log 4 (a)=9 ⇔ log 4 (a)=3
log 4 (a^1/3) (1/3)log 4 (a) 1log 2 (a^1/3) = = = = 2
log 4 (2) log 4 (√4) 1/2
3) lg2.5 если log 4(125) = a
log 4(125) = a ⇔ log 4(5³) =3 log 4(5) =a ⇔ log 4(5)=a/3
log 4 (5/2) log 4 (5)-log 4 (2) a/3-1/2 2a-3lg2.5 = = = =
log 4 (5·2) log 4 (5) +log 4 (2) a/3 +1/2 2a+3