Чисельник звичайного дробу на 2 менший від знаменника якщо від чиссельника дробу відняти 3 а до знаменника додати 3 то одержимо дріб який на 4/9 менший від даного.Знайдіть даний дріб. Нехай чиссельник даного дробу дорівнює x.Яке рівнняя відповідає умові щадачі
Имеем функцию:
y = (27 + 6 * x - x^2)^(1/2).
Для начала определим ОДЗ функции:
27 + 6 * x - x^2 > 0;
x^2 - 6 * x - 27 < 0;
D = 36 + 108 = 144;
x1 = (6 - 12)/2 = -3;
x2 = (6 + 12)/2 = 9;
(x + 3) * (x - 9) < 0;
-3 < x < 9 - ОДЗ.
Найдем производную функции:
y'= 1/2 * (27 + 6 * x - x^2)^(-1/2) * (6 - 2 * x).
Найдем критические точки:
6 - 2 * x = 0;
x = 3.
Если -3 < x < 3, то производная положительна (функция возрастает).
Если 3 < x < 9, то производная отрицательна (функция убывает).
x = 3 - точка максимума функции.
y(3) = (27 + 18 - 9)^(1/2) = 6.
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5