1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1
Русская классика ? на 6к.>
Зарубежная классика ?
Всего 18к.
Объяснение:
1.Решение по действиям:
1) (18-6):2=6(к) зарубежная классика.
2)18-6=12(к) русская классика.
Зарубежная классика - 6 книг.
Русская классика - 12книг.
2.Решение задачи с
уравнения:
Пусть Ира прочитала х книг
зарубежной классики, тогда
русской классики она прочла
(х+6) книг. Всего за лето Ира
прочитала х+(х+6) книг, что по
условию задачи составляет
18 книг. Составим уравнение:
х+(х+6)=18
х+х+6=18
2х+6=18
2х=18-6
2х=12
х=12:2
х=6 книг зарубежной классики.
6+6=12 книг русской классики.
Зарубежная классика - 6 книг.
Русская классика - 12 книг.