В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Игорь981
Игорь981
02.07.2020 19:38 •  Алгебра

Дана функция g(x)= 7.8/x.Расположите в порядке убывания g(-5.8):g(-5.2):g(-5.7).ответ объясните

Показать ответ
Ответ:
Zayka1231
Zayka1231
03.09.2020 00:57

‥・Здравствуйте, tima0604! ・‥

• ответ:

Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)

• Как и почему?

Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:

• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).

• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.

• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.

• 4. Привести подобные члены 3√21 и 2√21: -11+√21.

• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.

‥・С уважением, Ваша GraceMiller! :) ・‥

0,0(0 оценок)
Ответ:
GromOverzhec123447
GromOverzhec123447
24.03.2021 14:00
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота