бласть значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
бласть значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
Выбирай из того, что .
1. a) 2(2x-c). б) х³(1+х⁵) в) 8ху(2-х)
2. а) (ах+ау)+(7х+7у)=а(х+у)+7(х+у)=
=(а+7)(х+у)
б) (ау-9а)-(ху-9х)= а(у-9)-х(у-9)=
=(а-х)(у-9)
в) (у⁹-у⁵)-(у⁴-1)=у⁵(у⁴-1)-(у⁴-1)=
=(у⁵-1)(у⁴-1)
3. а) 14²+28у+у²
б) (3а-7в)²=9а²-42ав+49в²
в) (3-с⁴)²=9-6с⁴+с⁸
4. а) а²+(2а-в)²=а²+4а²-4ав+в²=6а²-4ав+в²
б) 16в²-(а-4в)²=16в²-(а²-8ав+16в²)=
=16в²-а²+8ав-16в²=-а²+8ав=а²-8ав
в) (4+у)²-у(у-5)=14-8у+у²-у²+5у=14-8у
5. а) (2х+1)²-4х²=7
4х²+4х+1-4х²=7
4х+1=7
4х=7-1
х=6/4
х=1½
х=0,5
ответ: 0,5.
б) (х+5)²-(х-1)²=48
х²+10х+25-(х²-2х+1)=48
х²+10х+25-х²+2х-1=48
12х+24=48
12х=48-24
12х=24
х=24/12
х=2
ответ: 2.
6. (8х+2)²-16х(4х+1)=
=64х²+32х+4-64х²-16х=
=16х+4=4(4х+1)
Если х=1/12, то 4(4х+1) равно
4(4•(1/12)+1)=
=4(⅓+1)=4•(4/3)=16/3=5⅓
ответ: 5⅓.