Для контрольной работы был создан тест из 8 заданий. Количество верных ответов, полученных каждым из 50 учащихся, было представлено в виде таблицы частот. Найди пропущенное значение частоты. Oтвет 0 1 2 3 4 5 6 7 8 Частота 2 1 3 6 7 10 3 6
Чередуются цифры: 3, 9, 7, 1. Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).
Чередуются цифры: 7, 9, 3, 1. Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).
16 = 4*4 + 0, следовательно, числа и оканчиваются на 1, а их сумма (...1 + ...1) на 2.
Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:
1) Поначалу помножим числа на числа, корни на корни:
Вот и нашли. 2)
3) Нахождение любого члена прогрессии находиться по формуле: - где n любое число, d разность прогрессии. Отсюда получаем уравнение, где n=6 (шестой член):
4)
Раскроем скобки:
Теперь подставляем 1/2:
5)
Берем большее большого :
Это и есть ответ.
P.S. ответ на задание исправлен, в связи с моими ошибками в задании 4 и 5. Благодарю Artem112 за то что дал возможность исправить решение, и заметил мою ошибку. Так же прощения от автора вопроса, из за моей ошибки, вы получили плохую оценку.
Чередуются цифры: 3, 9, 7, 1.
Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).
Чередуются цифры: 7, 9, 3, 1.
Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).
16 = 4*4 + 0, следовательно, числа и оканчиваются на 1, а их сумма (...1 + ...1) на 2.
Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:
Вот и нашли.
2)
3)
Нахождение любого члена прогрессии находиться по формуле:
- где n любое число, d разность прогрессии.
Отсюда получаем уравнение, где n=6 (шестой член):
4)
Раскроем скобки:
Теперь подставляем 1/2:
5)
Берем большее большого :
Это и есть ответ.
P.S. ответ на задание исправлен, в связи с моими ошибками в задании 4 и 5.
Благодарю Artem112 за то что дал возможность исправить решение, и заметил мою ошибку. Так же прощения от автора вопроса, из за моей ошибки, вы получили плохую оценку.