Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный.
2 | 1
3 | 4
схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)=
-ctg45°
x = k/3; k € Z
Объяснение:
Область определения
cos(П/2 - 2Пх) ≠ 0
П/2 - 2Пх ≠ П/2 + Пm; m € Z
x ≠ - m/2; m € Z
Формулы приведения.
sin(П - 7Пх) = sin(7Пх)
sin(П/2 + 7Пх) = cos(7Пх)
sin(П - 2Пх) = sin(2Пх)
cos(П/2 - 2Пх) = sin(2Пх)
Подставляем.
sin^2(7Пх) + cos^2(7Пх) = sin(2Пх) / sin(2Пх) + sin(3Пx)*cos(Пх/2)
1 = 1 + sin(3Пх)*cos(Пх/2)
sin(3Пх)*cos(Пх/2) = 0
Если произведение равно 0, то один из множителей равен 0.
1) sin(3Пх) = 0
3Пх = П*k; k € Z
x1 = k/3; k € Z - это решение.
2) cos(Пх/2) = 0
Пх/2 = П/2 + П*n; n € Z
x2 = 1 + 2n; n € Z
x ≠ - m/2; m € Z
Но при любом n можно подобрать такое m, что будет
x2 = 1 + 2n = - m/2
Поэтому никакое х2 не подходит по области определения.