n⁸+3n⁴-4=(n⁴+4)(n⁴-1)=(n⁴+4)(n²+1)(n+1)(n-1) Если число n не кратно 5, то оно дает при делении на 5 остатки либо1, либо2, либо3, либо 4, это означает, что число можно представить как 5k+1 либо 5k+2 либо 5k+3 либо 5k+4. При n=5k+1 n-1=5k+1-1=5k - кратно 5. Множитель (n-1) делится на 5, значит все произведение делится на 5.
При n=5k+2 n²+1=(5k+2)²+1=25k²+20k+4+1=25k²+20k+5=5(5k²+4k+1) - кратно 5. Множитель (n²+1) делится на 5, значит все произведение делится на 5.
При n=5k+3 n²+1=(5k+3)²+1=25k²+15k+9+1=25k²+15k+10=5(5k²+3k+2) - кратно 5. Множитель (n²+1) делится на 5, значит все произведение делится на 5.
При n=5k+4 n+1=(5k+4)+1=5k+5=5(k+1) - кратно 5. Множитель (n+1) делится на 5, значит все произведение делится на 5.
Если число n не кратно 5, то оно дает при делении на 5 остатки либо1, либо2, либо3, либо 4, это означает, что число можно представить как
5k+1 либо 5k+2 либо 5k+3 либо 5k+4.
При n=5k+1
n-1=5k+1-1=5k - кратно 5.
Множитель (n-1) делится на 5, значит все произведение делится на 5.
При n=5k+2
n²+1=(5k+2)²+1=25k²+20k+4+1=25k²+20k+5=5(5k²+4k+1) - кратно 5.
Множитель (n²+1) делится на 5, значит все произведение делится на 5.
При n=5k+3
n²+1=(5k+3)²+1=25k²+15k+9+1=25k²+15k+10=5(5k²+3k+2) - кратно 5.
Множитель (n²+1) делится на 5, значит все произведение делится на 5.
При n=5k+4
n+1=(5k+4)+1=5k+5=5(k+1) - кратно 5.
Множитель (n+1) делится на 5, значит все произведение делится на 5.