В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
alligator5
alligator5
20.02.2022 18:21 •  Алгебра

Докажите, что если l и b корни многочлена p(x), то p(x) делится на (x-l)(x-b)

Показать ответ
Ответ:
Shamiloo98
Shamiloo98
04.10.2020 09:21
Будем считать, что L≠B. Иначе утверждение не верно (или тогда в условии должно быть что-то сказано про кратность корня. Но в этом случае не будет задачи, т.к. если кратность, допустим корня В больше или равна 2, то по определению кратности корня это и значит делимость многочлена на (x-B)²).

Итак, если L - корень многочлена P(x), то по т. Безу P(x)=(x-L)P₁(x), где P₁(x) - некоторый многочлен. Т.к. В - тоже корень многочлена P(x), то  P(B)=(B-L)P₁(B)=0, откуда P₁(B)=0, т.е. B - корень многочлена P₁(x). Значит, опять по т. Безу P₁(х)=(х-В)P₂(x). Таким образом, P(x)=(x-L)P₁(x)=(x-L)(х-В)P₂(x), что и требовалось.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота