С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
(x² - x + 1)⁴ - 6x²(x² - x +1)² + 5x⁴ = 0
(x² - x + 1)² = y
y² - 6x²y + 5x⁴ = 0
D = (6x²)² - 4*5x⁴ = 16x⁴
y₁₂ = (6x² +- 4x²)/2 = x² 5x²
1. y = x²
(x² - x + 1)² = x²
(x² - x + 1)² - x² = 0
(x² - x + 1 - x)(x² - x + 1 + x) = 0
(x - 1)²(x² + 1) = 0
x = 1
x² + 1 = 0 нет действительных решений
2. y = 5x²
(x² - x + 1)² = 5x²
(x² - x + 1)² - 5x² = 0
(x² - x + 1 - √5x)(x² - x + 1 + √5x) = 0
x² - x + 1 - √5x = 0
x² - x(1 + √5) + 1 = 0
D = (1 + √5)² - 4 = 2 + 2√5
x₁₂ = (1 +√5 +- √(2 + 2√5))/2
x² - x + 1 + √5x = 0
x² - x(1 - √5) + 1 = 0
D = (1 - √5)² - 4 = 2 - 2√5 < 0 нет действительных решений
ответ 1, (1 +√5 ± √(2 + 2√5))/2