Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
г)(5/3)²ˣ⁻⁸<(9/25)⁻ˣ⁺³ , (5/3)²ˣ⁻⁸< ((5/3)⁻²)⁻ˣ⁺³ (5/3)²ˣ⁻⁸< (5/3)²ˣ⁻⁶
основание (5/3)>1 , значит 2х-8<2x-6⇒ 0x<2? что невозможно,значит нет реш , х=∅
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0