Дрон летел над землей. График на рисунке показывает, как менялась со временем (в мин) высота (в м), на которой находился дрон. Во сколько раз скорость, с которой дрон поднимался вначале больше скорости, с которой он опустился в конце? Если ответ получился нецелым, запишите его в виде обыкновенной дроби, не выделяя целую часть. Например, 3/4 или 37/11.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Через одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции