1) π--это 180°. Можем 130° разложить как 13*180°/18, поэтому 130°=13π/18 рад. Также этот угол меньше 180°, но больше 90°, поэтому он во второй четверти
2) 19π/4. Теперь вместо π подставляем 180° и сокращаем, что возможно
19*180°/4=19*45=855°. Чтобы узнать четверть, нужно преобразовать этот угол в промежуток от -360° до 360°. Для этого нужно несколько раз отнять по целому обороту (то есть, по 360°)
855°=(360°*2+135°)=135°. Как и в случае, этот угол меньше 180°, но больше 90°, поэтому он во второй четверти
1) π--это 180°. Можем 130° разложить как 13*180°/18, поэтому 130°=13π/18 рад. Также этот угол меньше 180°, но больше 90°, поэтому он во второй четверти
2) 19π/4. Теперь вместо π подставляем 180° и сокращаем, что возможно
19*180°/4=19*45=855°. Чтобы узнать четверть, нужно преобразовать этот угол в промежуток от -360° до 360°. Для этого нужно несколько раз отнять по целому обороту (то есть, по 360°)
855°=(360°*2+135°)=135°. Как и в случае, этот угол меньше 180°, но больше 90°, поэтому он во второй четверти
Раскладывать выражения на множители будем, используя группировки:
1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).
По формуле а2 – b2 = (a – b)(а + b):
(x – 3y) + (x – 3y)(x + 3y).
Выносим выражение (x – 3y) за скобку:
(x – 3y)(1 + x + 3y).
2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.
Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:
(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).
3). Выносим b3 за скобку и группируем:
ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].
Выносим общий множитель (a – 1) за скобку:
b3(a – 1)(b2 – 1).
4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).
Выражение в скобке «сворачиваем» как квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):
1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).
ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).
Объяснение: