Задача не имеет одного решения по поводу середины стороны ВС - вершины могут идти по часовой или Но координаты вершин известны: A(4;5) и C(-2;-1). Координаты соответствуют границам квадрата - правая сторона проходит по х=4, левая - по х=-2. Верхняя - по у=5, нижняя - по у=-1. Проверяем - это действительно квадрат со стороной 6. Вершины квадрата Вариант расположения по часовой стрелке D(-2;5) А(4;5)
С(-2;-1) В(4;-1)
Или (Вариант расположения против часовой стрелки) В(-2;5) А(4;5)
С(-2;-1) D(4;-1) Соответственно координата точки, которая делит сторону ВС пополам - Е(1;-1) или Е(-2;2).
Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
A(4;5) и C(-2;-1). Координаты соответствуют границам квадрата - правая сторона проходит по х=4, левая - по х=-2. Верхняя - по у=5, нижняя - по у=-1. Проверяем - это действительно квадрат со стороной 6.
Вершины квадрата
Вариант расположения по часовой стрелке
D(-2;5) А(4;5)
С(-2;-1) В(4;-1)
Или (Вариант расположения против часовой стрелки)
В(-2;5) А(4;5)
С(-2;-1) D(4;-1)
Соответственно координата точки, которая делит сторону ВС пополам - Е(1;-1) или Е(-2;2).