Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Пусть x км/ч – скорость первого бегуна, тогда x + 8 км/ч – скорость второго бегуна.
Через 1 час первому бегуну оставалось пробежать 7 км для окончания первого круга, тогда один круг составляет 1· x + 7 км.
Через 1 час первому бегуну сообщили, что второй бегун пробежал первый круг 3 минут назад, т. е. второму бегуну потребовалось 1 – 1/20 = 19/20 ч для преодоления одного круга и тогда один круг составляет
Задание22в34_1 км.
Получим уравнение
Умножим обе части уравнения на 20 и раскроем скобки, получим
20x + 140 = 19x + 152
20x – 19x = 152 – 140
x = 12
Таким образом, скорость первого бегуна равна 12 км/ч.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
ответ:РЕШЕНИЕ
Объяснение:
Пусть x км/ч – скорость первого бегуна, тогда x + 8 км/ч – скорость второго бегуна.
Через 1 час первому бегуну оставалось пробежать 7 км для окончания первого круга, тогда один круг составляет 1· x + 7 км.
Через 1 час первому бегуну сообщили, что второй бегун пробежал первый круг 3 минут назад, т. е. второму бегуну потребовалось 1 – 1/20 = 19/20 ч для преодоления одного круга и тогда один круг составляет
Задание22в34_1 км.
Получим уравнение
Умножим обе части уравнения на 20 и раскроем скобки, получим
20x + 140 = 19x + 152
20x – 19x = 152 – 140
x = 12
Таким образом, скорость первого бегуна равна 12 км/ч.
ответ: 12