да тут приравнять функции, решить получившееся, найти х а потом и у 1)х²=-х х²+х=0 х(х+1)= ⇒х1=0; x2=-1 ⇒y1=0; y2=1 ответ (0,0) (-1.1) 2) -x²=x -x²-x=0 -x(x+1)=0 ⇒ x1=0; x2=-1; ⇒y1=0; y2= 1 ответ (0,0) (-1.1) 3) x²=-x+6 x²+x-6=0 d=1+24=25 ⇒ x1=(-1-5)/2=-3 y1=9 x2=(-1+5)\2=2 ⇒y2=4 ответ (-3,9) (2,4) 4)-x²=2x-3 -x²-2x+3=0 d=4+12=16 ⇒x1=(2-4)\-2=1 y1=-1 x2=(2+4)\-2=-3 y2=-9 ответ (1,-1) (-3,-9) 5) x-2=2x-3-x=-1x=1 y=-1ответ (1,-1)6) x²= x-3x²-x+3=0 d=1-12=-11 решений нет, то есть функции не пересекаются
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.