sinα•cosβ + cosα•sinβ = sin(α + β)
sinα - sinβ = 2•sin( (1/2)•(α - β) )•cos( (1/2)•(α + β) )
n⁴ - 34n² + 1 > 0
Введём замену переменной n² = t, причём t > 0:
t² - 34t + 1 > 0
Приравняем данное квадратное неравенство к нулю и найдём корни:
t² - 34t + 1 = 0
D = b² - 4ac = 1156 - 4 = 1152 = (24√2)²
t₁₂ = (34 ± 24√2)/2 = 17 ± 12√2
Вернёмся к замене:
n = ± (3 + 2√2)
n = ± (3 - 2√2)
Наибольшие корни здесь 3 + 2√2 и 3 - 2√2. Пусть √2 ≈ 1.4, составим неравенство:
3 - 2 · 1.4 < x < 3 + 2 · 1.4
3 - 2.8 < x < 3 + 2.8
0.2 < x < 5.8
Наибольшее положительное простое число - это число 5. Оно делится на себя и на единицу.
5
sinα•cosβ + cosα•sinβ = sin(α + β)
sin( π/3 + x ) = cos2xsin( π/3 + x ) - cos2x = 0sin( π/3 + x ) - sin( π/2 - 2x ) = 0sinα - sinβ = 2•sin( (1/2)•(α - β) )•cos( (1/2)•(α + β) )
2•sin( (1/2)•(π/3 + x - π/2 + 2x) )•cos( (1/2)•(π/3 + x + π/2 - 2x) ) = 02•sin( (1/2)•(3x - π/6) )•cos( (1/2)•(-x + 5π/6) ) = 0Произведение равно нулю, если хотя бы один из множителей равен нулю.1) sin( (1/2)•(3x - π/6) ) = 0(1/2)•(3x - π/6) = πn3x - π/6 = 2πn3x = π/6 + 2πnx = π/18 + 2πn/3 , n ∈ Z2) cos( (1/2)•(-x + 5π/6) ) = 0(1/2)•(-x + 5π/6) = π/2 + πk- x + 5π/6 = π + 2πkx = - π/6 + 2πk , k ∈ ZОТВЕТ: π/18 + 2πn/3 , n ∈ Z ; - π/6 + 2πk , k ∈ Zn⁴ - 34n² + 1 > 0
Введём замену переменной n² = t, причём t > 0:
t² - 34t + 1 > 0
Приравняем данное квадратное неравенство к нулю и найдём корни:
t² - 34t + 1 = 0
D = b² - 4ac = 1156 - 4 = 1152 = (24√2)²
t₁₂ = (34 ± 24√2)/2 = 17 ± 12√2
Вернёмся к замене:
n² = 17 + 12√2n = ± (3 + 2√2)
n² = 17 - 12√2n = ± (3 - 2√2)
Наибольшие корни здесь 3 + 2√2 и 3 - 2√2. Пусть √2 ≈ 1.4, составим неравенство:
3 - 2 · 1.4 < x < 3 + 2 · 1.4
3 - 2.8 < x < 3 + 2.8
0.2 < x < 5.8
Наибольшее положительное простое число - это число 5. Оно делится на себя и на единицу.
ответ5