ОДЗ: Так как функция y = tg x не определена при х = π/2 + πk, k ∈ Z, то функция y = tg x/3 не определена при x/3 = π/2 + πn, n ∈ Z или при x = 3π/2 + 3πn, n ∈ Z.
Вывод: Обл. определения данной функции - множество всех действительных чисел, кроме чисел вида x = 3π/2 + 3πn, n ∈ Z.
С промежутков это можно записать так:
x ∈ ( - 3π/2 + 3πn; + 3π/2 + 3πn, n ∈ Z).
b) Так как период функции y = tg x равен πk, k ∈ Z, то для функции
y = tg x/3 период будет в три раза больше.
Т = 3πn, n ∈ Z.
3πn > 0 при n > 0, то есть при n = 1, 2, 3,..., а наименьший период будет при n = 1.
X≈2,1
Объяснение:
802(3x-5 -0,3 - 1) = -0,7
Правила раскрытия скобок, 802 умножается на каждый член в скобках, т.е. 802 * 3x + 802 * -5 + 802 * -0,3 + 802 * -1 = -0,7
2406x - 4010 - 240,6 - 802 = -0,7
Далее все что с Х, оставляем в левой стороне, а все что без Х переносим вправо (за знак "="), но с противоположным знаком
2406x = -0,7 + 4010 + 240,6 + 802
2406x = 5051,9
Х ищется путем 5051,9 делится на 2406
Х = 2,099709...
Но тут Х не получается целым, и если округлять ответ (не знаю, проходили округления или нет), то получается X≈2,1
а) ( - 3π/2 + 3πn; + 3π/2 + 3πn, n ∈ Z).
б) Т наим = 3π.
Объяснение: а) y tg x/3
ОДЗ: Так как функция y = tg x не определена при х = π/2 + πk, k ∈ Z, то функция y = tg x/3 не определена при x/3 = π/2 + πn, n ∈ Z или при x = 3π/2 + 3πn, n ∈ Z.
Вывод: Обл. определения данной функции - множество всех действительных чисел, кроме чисел вида x = 3π/2 + 3πn, n ∈ Z.
С промежутков это можно записать так:
x ∈ ( - 3π/2 + 3πn; + 3π/2 + 3πn, n ∈ Z).
b) Так как период функции y = tg x равен πk, k ∈ Z, то для функции
y = tg x/3 период будет в три раза больше.
Т = 3πn, n ∈ Z.
3πn > 0 при n > 0, то есть при n = 1, 2, 3,..., а наименьший период будет при n = 1.
Т наим. = 3π*1 = 3π