К графику проведены две касательные. Первая касательная проведена в точке на графике с абсциссой x0=2, вторая - в точке максимума данной функции. Найдите площадь треугольника, образованного осью ординат и этими касательными.
Много избыточных данных в . видимо чтобы запутать. мне представляется все гораздо проще. если скорость каждого автобуса увеличится в двое, то в двое увеличится и их общая скорость сближения, следовательно в двое уменьшиться время в пути. значит и к месту встречи они доберутся в двое быстрее. и встретятся а во сколько они выехали? мы не знаем их время в пусть выехали они в 6 утра. встретились в 12 дня. в пути были 12-6=6 часов. увеличив в двое скорость - в двое уменьшится скорость в пути 6: 2=3 ч. встретятся они в 6+3=9 ч. или еще как вариант, но не уверен в правильности обозначим скорости автобусов через х и у, тогда х+у в 12.00 2х+у в 12.00 - 0.56 = 11.04 х+2у в 12.00 - 1.05 = 10.55 если сложим два последних уравнения (2х+у)+(х+2у) и вычтем первое (2х+у)+(х++у)=2х+у+х+2у-х-у=2х+2у а теперь попробуем тоже самое сделать с правыми частями 11.04+10.55-12.00=21.59 - 12.00= 9.59 получается так, что встреча будет в 9.59
1)находим производную: f`(y)=x^2-3x
приравниваем к нулю и решаем: x(x-3)=0
x=0 или x=3
подставляем значения -1,0,1,3 в условие
f(-1)=-1/3-3/2+1=-1/3-1/2=-5/6
f(0)=1
f(1)=1/3-3/2+1=1/3-1/2=-1/6
f(3)=1/3*27-3/2*9+1= 9-13.5+1=-3.5
наименьшее значение: -3.5
наибольшее: 1
2)снова находим производную: f`(y)=2x
приравниваем к 0: 2х=0
х=0
убывает (от -бесконечности до 0)
возрастает (от 0 до бесконечности)
Критические точки функции, в которых она меняет возрастание на убывание или убывание на возрастание, называются точками экстремума.
значит точка экстремума=0