кто ответит!
Постройте график функции у = х²-5х+6(построение выполнить в координатной плоскости с единичным отрезком, равным 1 см) Найдите с графика:
а) значение у при х=1,5
б) значения х при которых у=3
в) значения х при которых у>0
г) промежуток, в котором функция убывает
2) х + 4,2 = 6,9 4) 0,3х = 15 6) (1/5)х + 4 = -2 1/3
х = 6,9 - 4,2 х = 15 : 0,3 (1/5)х = -2 1/3 - 4
х = 2,7 х = 50 (1/5)х = -6 1/3 = -19/3
х = -19/3 : 1/5
х = -19/3 · 5 = -95/3
х = -31 целая 2/3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8) 3(2х + 5) - 2(3х + 1) = 2 10) 5 1/6 : х = -31
6х + 15 - 6х - 2 = 2 31/6 : х = -31
6х - 6х = 2 + 2 - 15 х = 31/6 : (-31)
0х = -11 х = 31/6 · (-1/31)
х = ∅ (на 0 делить нельзя!) х = -1/6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12) х² + 16 = 0
D = b² - 4ac = 0² - 4 · 1 · 16 = 0 - 64 = -64
Так как дискриминант меньше 0, то уравнение не имеет решений.
ответ: нет решений.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14) 6х² + х = 0
х · (6х + 1) = 0
х = 0 и 6х + 1 = 0
6х = -1
х = -1/6
ответ: (-1/6; 0).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16) х² + 8х + 16 = 0
D = b² - 4ac = 8² - 4 · 1 · 16 = 64 - 64 = 0
Так как дискриминант равен 0, то квадратное уравнение имеет один корень
х = (-8)/(2·1) = -8/2 = -4
ответ: (-4).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
18) х² - 7х + 6 = 0
D = b² - 4ac = (-7)² - 4 · 1 · 6 = 49 - 24 = 25
√D = √25 = 5
х₁ = (7-5)/(2·1) = 2/2 = 1
х₂ = (7+5)/(2·1) = 12/2 = 6
ответ: (1; 6).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20) (2х - 5)(х + 3) = 0
2х - 5 = 0 и х + 3 = 0
2х = 5 х = -3
х = 5 : 2
х = 2,5
ответ: (-3; 2,5).
НЕТ НЕ ВЕРНО
|a + b| ≤ |a| + |b| это ВЕРНО
Существует 4 варианта знаков + и - для чисел a и b
1 вариант
Если a > 0 и b > 0
их модули совпадают с их значениями: |a| = a, |b| = b
Из этого следует, что |a + b| = |a| + |b|
2 вариант
Если a < 0 и b > 0
выражение |a + b| можно записать как |b – a|
А выражение |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|
3 вариант (похож на 2 вариант)
Если a > 0 и b < 0 |a + b|
выражение |a + b| принимает вид |a – b|
А выражение |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|
Поэтому |a + b| < |a| + |b|
4 вариант
Если a < 0 и b < 0
тогда |a + b| = |–a – b| = |-(a + b)|
Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|
значит |a + b| ≤ |a| + |b| в зависимости от знаков a и b
а вот |ab| = |a|*|b|