23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Разделите число желаемых событий на общее число возможных событий. Вы получите вероятность происшествия единичного события. В случае с выпадением числа три на игральной кости (на игральной кости только одна тройка), вероятность можно выразить как 1 ÷ 6, 1/6, .166, или 16.6%. Вот примеры вычисления вероятности для других примеров:Пример 1: Какова вероятность выбрать выходной день, случайно выбирая число?Так как в неделе два выходных, то число желаемых событий будет 2, а число возможных событий равно 7. Вероятность будет равна 2 ÷ 7 = 2/7, или .285, или 28.5%.Пример 2: В банке с мармеладом находится 4 синих, 5 красных и 11 белых шариков. Если предположить, что шарики перемешаны и вытаскиваются случайным образом, какова вероятность вытащить красный?Число желаемых событий равняется количеству красных шариков в банке – 5, общее число событий равняется 20. Вероятность 5 ÷ 20 = ¼, или 0.25, или 25%.
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число