Дано:
A) x⁴ + x³ + 11x² + 6x - 12
B) x⁴ + x³ - 7x² - x + 6
C) x⁴ - x³ - x² + 7x - 6
D) x⁴ - x³ - 11x² + 6x - 8
Корни многочлена
x₁ = -1
x₂ = 1
x₃ = 2
x₄ = -3
Найти:
Выбрать многочлен с данными корнями
Многочлен А)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ + 11 · (-1)² + 6 · (-1) - 12 = 1 - 1 + 11 - 6 -12 = -7
Многочлен А) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен В)
(-1)⁴ + (-1)³ - 7 · (-1)² - (-1) + 6 = 1 - 1 - 7 + 1 + 6 =0
Продолжим проверку
Подставим корень x₂ = 1
1⁴ + 1³ - 7 · 1² - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0
Подставим корень x₃ = 2
2⁴ + 2³ - 7 · 2² - 2 + 6 = 16 + 8 - 28 - 2 + 6 = 0
Проверим и последний корень
(-3)⁴ + (-3)³ - 7 · (-3)² - (-3) + 6 = 81 - 27 - 63 + 3 + 6 = 0
Многочлен В) подходит, так как его значение при ПРИ ВСЕХ КОРНЯХ равно нулю.
Многочлен С)
(-1)⁴ - (-1)³ - (-1)² + 7 · (-1) - 6 = 1 + 1 - 1 - 7 - 6 = -12
Многочлен С) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен D)
(-1)⁴ - (-1)³ - 11 · (-1)² + 6 · (-1) - 8 = 1 + 1 - 11 - 6 - 8 = -23
Многочлен D) не подходит, так как его значение при x₁ = -1 не равно нулю.
ну это тождество в принципе не совсем то, что надо
(4х^4+1/4) - 4(2х^3+1/2х) = 10х^2
(2x^2 + 1/2)^2 = 4x^4 + 2*2x^2*1/2 + 1/4 = 4x^4 + 1/4 + 2x^2
(2x^2 + 1/2)^2 - 2x^2 - 4x(2x^2 + 1/2) = 10x^2
(2x^2 + 1/2)^2 - 4x(2x^2 + 1/2) - 12x^2 = 0
замена 2x^2 + 1/2 = t
t^2 - 4x*t - 12x^2 = 0
D=16x^2 + 48x^2 = 64x^2
t12 = (4x +- 8x)/2 = 6x и -2x
1. 2x^2 + 1/2 = -2x
2x^2 +2x + 1/2 = 0
D=4 - 4*1/2*2 = 4 - 4 = 0
x = -2/4 = -1/2
2, 2x^2 + 1/2 = 6x
2x^2 - 6x + 1/2 = 0
D= 36 - 4*1/2*2 = 36 - 4 = 32
x23=(6 +- √32)/4 = (6+- 4√2)/4 = 3/2 +- √2
ответ -1/2 3/2+√2 3/2 - √2
Дано:
A) x⁴ + x³ + 11x² + 6x - 12
B) x⁴ + x³ - 7x² - x + 6
C) x⁴ - x³ - x² + 7x - 6
D) x⁴ - x³ - 11x² + 6x - 8
Корни многочлена
x₁ = -1
x₂ = 1
x₃ = 2
x₄ = -3
Найти:
Выбрать многочлен с данными корнями
Многочлен А)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ + 11 · (-1)² + 6 · (-1) - 12 = 1 - 1 + 11 - 6 -12 = -7
Многочлен А) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен В)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ - 7 · (-1)² - (-1) + 6 = 1 - 1 - 7 + 1 + 6 =0
Продолжим проверку
Подставим корень x₂ = 1
1⁴ + 1³ - 7 · 1² - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0
Продолжим проверку
Подставим корень x₃ = 2
2⁴ + 2³ - 7 · 2² - 2 + 6 = 16 + 8 - 28 - 2 + 6 = 0
Проверим и последний корень
x₄ = -3
(-3)⁴ + (-3)³ - 7 · (-3)² - (-3) + 6 = 81 - 27 - 63 + 3 + 6 = 0
Многочлен В) подходит, так как его значение при ПРИ ВСЕХ КОРНЯХ равно нулю.
Многочлен С)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - (-1)² + 7 · (-1) - 6 = 1 + 1 - 1 - 7 - 6 = -12
Многочлен С) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен D)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - 11 · (-1)² + 6 · (-1) - 8 = 1 + 1 - 11 - 6 - 8 = -23
Многочлен D) не подходит, так как его значение при x₁ = -1 не равно нулю.
B) x⁴ + x³ - 7x² - x + 6
ну это тождество в принципе не совсем то, что надо
(4х^4+1/4) - 4(2х^3+1/2х) = 10х^2
(2x^2 + 1/2)^2 = 4x^4 + 2*2x^2*1/2 + 1/4 = 4x^4 + 1/4 + 2x^2
(2x^2 + 1/2)^2 - 2x^2 - 4x(2x^2 + 1/2) = 10x^2
(2x^2 + 1/2)^2 - 4x(2x^2 + 1/2) - 12x^2 = 0
замена 2x^2 + 1/2 = t
t^2 - 4x*t - 12x^2 = 0
D=16x^2 + 48x^2 = 64x^2
t12 = (4x +- 8x)/2 = 6x и -2x
1. 2x^2 + 1/2 = -2x
2x^2 +2x + 1/2 = 0
D=4 - 4*1/2*2 = 4 - 4 = 0
x = -2/4 = -1/2
2, 2x^2 + 1/2 = 6x
2x^2 - 6x + 1/2 = 0
D= 36 - 4*1/2*2 = 36 - 4 = 32
x23=(6 +- √32)/4 = (6+- 4√2)/4 = 3/2 +- √2
ответ -1/2 3/2+√2 3/2 - √2