Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,
9x^2+12x+4=10+3x^2+6x-6x-12
9x^2+12x+4-10-3x^2-6x+6x+12=0
6x^2+12x+6=0
D=12^2−4·6·6=144−144=0(Уравнение имеет один корень)
X1=-12/2*6=-12/12=-1
2)4x^2-12x+9=9-2(x^2+3x-3x-9)
4x^2-12x+9=9-2x^2-6x+6x+18
4x^2-12x+9-9+2x^2+6x-6x-18=0
6x^2-12x-18=0
D=(−12)^2−4·6·(−18)=144+432=576=24
x1=-(-12)+24/2*6=36/12=3
X2=-(-12)-24/2*6=-12/12=-1
3)x^3-2x^2+4x+2x^2-4x+8-x^3-2x^2=0
-2x^2+8=0
2x^2-8=0
D=0^2−4·2·(−8)=0+64=64=8
x1=-0+8/2*2=8/4=2
x2=-0-8/2*2=-8/4=-2
4)x^3+x^2-x-x^2-x+1-x^3+x^2=0
x^2-2x+1=0
D=(−2)^2−4·1·1=4−4=0 (Уравнение имеет один корень)
x1=-(-2)/2*1=2/2=1
Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,