Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
А1. Подставим значения х=1 в наши уравнения. 1)/х/ =-1 , /1/ =-1. Число 1 не является корнем данного уравнения, модуль числа не может быть отрицательным числом. 2)(х+1)²=0, (1+1)²=0, 4 = 0. Число 1 не является корнем данного уравнения. 3)(х-1)(х+1)=1, (1-1)(1+1)=1, 0(1+1)=1, 0*2=1, 0=1. Число 1 не является корнем данного уравнения.
4)(х+3)(х-4)=-12, (1+3)(1-4)=-12, 4*(-3) =-12, -12=-12. Число 1 является корнем данного уравнения.
А2. Решаем уравнение. 1)х-3=х+4, х-х = 4+3, 0=7. Уравнение не имеет корней. 2)/х/=9, х =9 или х=-9. 3)/х/=-6 - корней нет. Модуль числа не может быть отрицательным числом. 4)х²=-4. Квадратный корень числа не может быть отрицательным. Уравнение не имеет корней.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
2)(х+1)²=0, (1+1)²=0, 4 = 0. Число 1 не является корнем данного уравнения.
3)(х-1)(х+1)=1, (1-1)(1+1)=1, 0(1+1)=1, 0*2=1, 0=1. Число 1 не является корнем данного уравнения.
4)(х+3)(х-4)=-12, (1+3)(1-4)=-12, 4*(-3) =-12, -12=-12. Число 1 является корнем данного уравнения.
А2. Решаем уравнение. 1)х-3=х+4, х-х = 4+3, 0=7. Уравнение не имеет корней.
2)/х/=9, х =9 или х=-9.
3)/х/=-6 - корней нет. Модуль числа не может быть отрицательным числом.
4)х²=-4. Квадратный корень числа не может быть отрицательным. Уравнение не имеет корней.