h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
∅
h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅