В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
крыня1
крыня1
21.03.2021 11:32 •  Алгебра

Найдите 3 угол 3 треугольника!


Найдите 3 угол 3 треугольника!

Показать ответ
Ответ:
Julia13662004
Julia13662004
01.06.2021 17:42

Объяснение:

1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:

                      y-x = 7

Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:

                                  2x + y = 43

Таким образом, получаем следующую систему уравнений:

                              y-x = 7

                              2x+y = 43

решу систему методом подстановки:

                             y = x+7

                             2x + x+7 = 43 (1)

(1)2x+x+7 = 43

     3x+7 = 43

     3x = 36

     x = 12

12 см - боковая сторона треугольника, но надо всё равно дорешать систему.

                          x = 12

                          y = 12+7 = 19

ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.

0,0(0 оценок)
Ответ:
Sofa1351
Sofa1351
10.08.2020 08:20

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота