Функция возрастает если ее производная больше нуля. а если производная меньше нуля, то функция убывает у'=3x²-2x-1 3x²-2x-1=0 D=4+12=16 x1,2=(2+-4)/6 x1=1 x2=-(1/3) (рисуем параболу на оси X) y'>0 при x∈(-∞;-(1/3)|∪|1;+∞) y'<0 при x∈|-1/3;1| точки экстремума это минимальные и максимальные значения точки в некоторой окрестности. необходимое условие y'=0 при x=-(1/3); x=1 достаточное условие это то, что при переходе через эту точку функция меняет знак. Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум. Будут вопросы спрашивай)
у'=3x²-2x-1
3x²-2x-1=0
D=4+12=16
x1,2=(2+-4)/6
x1=1
x2=-(1/3)
(рисуем параболу на оси X)
y'>0 при x∈(-∞;-(1/3)|∪|1;+∞)
y'<0 при x∈|-1/3;1|
точки экстремума это минимальные и максимальные значения точки в некоторой окрестности.
необходимое условие y'=0
при x=-(1/3); x=1
достаточное условие это то, что при переходе через эту точку функция меняет знак.
Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум.
Будут вопросы спрашивай)
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2