х - цифра десятков (0<x<9)
у - цифра единиц (0<y<9)
По условию сумма цифр двузначного числа равна 8, получаем первое уравнение:
х+у=8
(10х+у) - данное число
(10у+х) - число, записанное теми же цифрами, но в обратном порядке.
По условию если данное число разделить на число, записанное теми же цифрами,но в обратном порядке, то в частном получится 4 в остатке 3.
(10х+у) : (10у+х) = 4(ост. 3)
Получим второе уравнение:
10х+у = 4·(10у+х)+3
Упростим его:
10х+у=40у+4х+3
6х-39у = 3
2х-13у = 1
Решаем систему:
7 - цифра десятков
1 - цифра единиц
71 - данное число
ответ: 71
12600 | 2 8820 | 2
6300 | 2 4410 | 2
3150 | 2 2205 | 3
1575 | 3 735 | 3
525 | 3 245 | 5
175 | 5 49 | 7
35 | 5 7 | 7
7 | 7 1
1 8820 = 2² · 3² · 5 · 7²
12600 = 2³ · 3² · 5² · 7
НОК = 2³ · 3² · 5² · 7² = 88200 - наименьшее общее кратное
НОД = 2² · 3² · 5 · 7 = 1260 - наибольший общий делитель
НОК : НОД = 88200 : 1260 = 70 - частное
ответ: 70.
х - цифра десятков (0<x<9)
у - цифра единиц (0<y<9)
По условию сумма цифр двузначного числа равна 8, получаем первое уравнение:
х+у=8
(10х+у) - данное число
(10у+х) - число, записанное теми же цифрами, но в обратном порядке.
По условию если данное число разделить на число, записанное теми же цифрами,но в обратном порядке, то в частном получится 4 в остатке 3.
(10х+у) : (10у+х) = 4(ост. 3)
Получим второе уравнение:
10х+у = 4·(10у+х)+3
Упростим его:
10х+у=40у+4х+3
6х-39у = 3
2х-13у = 1
Решаем систему:
7 - цифра десятков
1 - цифра единиц
71 - данное число
ответ: 71
12600 | 2 8820 | 2
6300 | 2 4410 | 2
3150 | 2 2205 | 3
1575 | 3 735 | 3
525 | 3 245 | 5
175 | 5 49 | 7
35 | 5 7 | 7
7 | 7 1
1 8820 = 2² · 3² · 5 · 7²
12600 = 2³ · 3² · 5² · 7
НОК = 2³ · 3² · 5² · 7² = 88200 - наименьшее общее кратное
НОД = 2² · 3² · 5 · 7 = 1260 - наибольший общий делитель
НОК : НОД = 88200 : 1260 = 70 - частное
ответ: 70.