Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Объяснение:
1) Область Определения Функции x ∈ (-2; +∞)
Нули = пересечение с осями (-1;0) и (0; -1)
Убывает на всей ООФ
Промежутки знакопостоянства y >0 при x ∈ (-2; -1), y <0 при x ∈ (-1; +∞)
Ни четная, ни нечетная
Непериодическая
Экстремумов нет, область значений (-∞; +∞)
Вертикальная асимптота х = -2
2) Область Определения Функции x ∈ (2; +∞)
Пересечение с ox (3;0)
Убывает на всей ООФ
Промежутки знакопостоянства y >0 при x ∈ (2; 3), y <0 при x ∈ (3; +∞)
Ни четная, ни нечетная
Непериодическая
Экстремумов нет, область значений (-∞; +∞)
Вертикальная асимптота х = 2