Часовая и минутная стрелки догоняют друг друга раз в 65 минут. Если они догоняют друг друга раз в 66 минут, то часы спешат на 1 минуту. Или же, если очень-очень точно считать, то, когда минутная проходит час от часовой, то проходит 60 минут, но минутная впереди на 5 минут. Когда минутная доходит до того 65-отрезка, то часовая еще 5/12 минут... и так очень долго будет продолжаться, пока геометрическая прогрессия не достигнет некоего предела. У меня получилось, что часы спешат на 6/11 минут, но вряд ли тут про это спрашивают). Хотя задача интересная.
Часовая и минутная стрелки догоняют друг друга раз в 65 минут. Если они догоняют друг друга раз в 66 минут, то часы спешат на 1 минуту. Или же, если очень-очень точно считать, то, когда минутная проходит час от часовой, то проходит 60 минут, но минутная впереди на 5 минут. Когда минутная доходит до того 65-отрезка, то часовая еще 5/12 минут... и так очень долго будет продолжаться, пока геометрическая прогрессия не достигнет некоего предела. У меня получилось, что часы спешат на 6/11 минут, но вряд ли тут про это спрашивают). Хотя задача интересная.
{x⁴-y⁴=80
Пусть a=x² a²=x⁴
b=y² b²=y⁴
{2a-3b=15
{a²-b²=80
2a-3b=15
2a=15+3b
(2a)² =(15+3b)²
4a² = (15+3b)²
a² -b² = 80
4a² - 4b²= 320
(15+3b)² - 4b² = 320
225+90b+9b²-4b²=320
5b² +90b -95 =0
b² +18b -19=0
D= 18² - 4*(-19)=324+76=400
b₁= -18-20 = -19
2
b₂ = -18+20 = 1
2
При b₁= -19
2a=15+3*(-19)
2a=15-57
2a=-42
a= -21
При b₂=1
2a=15+3*1
2a=18
a=9
При a=-21 и b= -19
x²= -21
y² = -19
нет решений.
При a=9 и b=1
x²=9
y²=1
x₁= 3
x₂= -3
y₁= 1
y₂ = -1
ответ: (3; 1) (3; -1)
(-3; 1) (-3; -1)