2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
попытаюсь объяснить. в целом алгоритм простой. легче всего, конечно, построить график и посмотреть где функция убывает, а где возрастает. Но если такой не подходит, то надо искать производную. В первом примере производная от синуса равна косинусу. Приравняем получившуюся производную к нулю (f'(x)=cosx=0). То есть х=π/2+πn, где n∈Z. Именно при таких х производная равна 0, то есть функция f(x) меняет свою монотонность. Если производная меньше нуля, то функция убывает, если больше, то она возрастает. Для этого надо подставить какие нибудь значения справа и слева от точек x=π/2+πn. Получаем что слева функция возрастает, а справа убывает. То есть функция возрастает от -π/2+πn, до π/2+πn, а убывает от π/2+πn до 3π/2+πn, где n∈Z.
Аналогично решим и другие. (надеюсь что теорию вы поняли, поэтому не буду расписывать)
2) Производная от косинуса равна минус синусу. Синус равен нулю в точках πn, где n∈Z. Так как при π/2 -sin(π/2) <0, то на промежутке от 0+πn до π+πn, где n ∈Z, функция убывает (так как точка π/2 лежит на таком промежутке при n=0 ), значит на интервале от -π+πn до 0+πn функция возрастает.
3) производная от тангенса равна 1/((cos x)^2). То есть при любых х производная больше 0. Это значит что функция возрастает на всей области определения.
4) производная от данной функции равна f'(x)=2cos(2x)-2sin(2x). Производная равна нулю при x=π/8+2πn и x=5π/8+2πn, где n∈Z. Решив аналогично предыдущим примерам, получим, что функция убывает на интервале [π/8+2πn; 5π/8+2πn] и возрастает на интервале [5π/8+2πn; 9π/8+2πn] где n∈Z.
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
Объяснение:
попытаюсь объяснить. в целом алгоритм простой. легче всего, конечно, построить график и посмотреть где функция убывает, а где возрастает. Но если такой не подходит, то надо искать производную. В первом примере производная от синуса равна косинусу. Приравняем получившуюся производную к нулю (f'(x)=cosx=0). То есть х=π/2+πn, где n∈Z. Именно при таких х производная равна 0, то есть функция f(x) меняет свою монотонность. Если производная меньше нуля, то функция убывает, если больше, то она возрастает. Для этого надо подставить какие нибудь значения справа и слева от точек x=π/2+πn. Получаем что слева функция возрастает, а справа убывает. То есть функция возрастает от -π/2+πn, до π/2+πn, а убывает от π/2+πn до 3π/2+πn, где n∈Z.
Аналогично решим и другие. (надеюсь что теорию вы поняли, поэтому не буду расписывать)
2) Производная от косинуса равна минус синусу. Синус равен нулю в точках πn, где n∈Z. Так как при π/2 -sin(π/2) <0, то на промежутке от 0+πn до π+πn, где n ∈Z, функция убывает (так как точка π/2 лежит на таком промежутке при n=0 ), значит на интервале от -π+πn до 0+πn функция возрастает.
3) производная от тангенса равна 1/((cos x)^2). То есть при любых х производная больше 0. Это значит что функция возрастает на всей области определения.
4) производная от данной функции равна f'(x)=2cos(2x)-2sin(2x). Производная равна нулю при x=π/8+2πn и x=5π/8+2πn, где n∈Z. Решив аналогично предыдущим примерам, получим, что функция убывает на интервале [π/8+2πn; 5π/8+2πn] и возрастает на интервале [5π/8+2πn; 9π/8+2πn] где n∈Z.