В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
KatyaDro
KatyaDro
20.06.2022 02:01 •  Алгебра

Найдите номер члена последовательности an = 3n 6 с 24.

Показать ответ
Ответ:
timev01
timev01
30.09.2020 00:59
9 7/15+2 1/5; = 142/15 + 11/5 = 142/15 + 33/15 = 175/15 = 11 10/15
б)2 5/32-1 7/36; = 69/32 - 43/36 = 277/288
в)2 7/16-(2 3/8 - 1 2/3) + 2 7/12 = 39/16 - (19/8 - 5/3) - 31/12 = 39/16 - (57/24 - 40/24) - 31/12 = 39/16 - 17/24 + 31/12 = 151/48 + 31/12 = 83/48 + 124/48 = 207/48 = 4 5/16 

3 - (х + 1 1/5)=1 3/25
3 - (х + 6/5) = 28/25
х+6/5=3- 28/25 = 75/25 - 28/25
х + 6/5 = 47/25
х = 47/25 - 6/5 = 47/25 - 30/25
х = 17/25
я сокращать вообщето не особо умею, может кто еще подскажет, ну вот что у меня получилось:
а/17 * b/2(Числитель)         1/17 * 1/2         1/17 *1
 =    = = 1/17 : 1/6 = 1/17 * 6/1 = 6/17 
а/12*b(Знаменатель)            1/12 * 1           1/6 * 1
0,0(0 оценок)
Ответ:
12345578824828
12345578824828
29.11.2021 23:10
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота