1) Обозначим скорость автомобиля через Х, тогда время, которое он затратит на поездку равно 180/Х.
Если скорость увеличить на 10 км/час, она станет равной (Х + 10), а время затраченное на поездку равно 180(Х+10)
2) Представив 15 минут как 1/4 часа можно написать уравнение:
180/Х - 180/(Х+10) = 1/4
Избавляемся от дроби, умножив все члены на 4Х(Х+10), получаем:
720Х + 7200 - 720Х = Х² + 10Х
Х² + 10Х -7200 = 0
3) Получается квадратное уравнение, решаем его. Находим дискриминант:
D = 10² + 4*7200 = 28900
√D = 170
Х₁ = (-10 - 170)/2 - отрицательное число, оно нам на подходит.
Х₂ = (-10 + 170)/2 = 80
ответ: 80 км/час
2) приравниваем её к 0 и решаем уравнение;
3) смотрим, какие корни попали в указанный промежуток и ищем значения функции в этих точках и на концах промежутка;
4) пишем ответ.
Поехали?
1) у' = 3x^2 +2x -8
2) 3x^2 +2x -8 = 0
x1= -2 ( входит в промежуток) x2 = 4/3 (не входит в промежуток)
3)у(-3) = (-3)^3 + (-3)^2 -8*(-3) -8 = -27 +9 +24 -8 = -2
y(0) = 0^3 +0^2 -8*0 -8 = -8
y(-2) = (-2)^3 +(-2)^2 -8*(-2) -8 = -8 +4 +16 -8 = 4
4) ответ: max y = y(-2) = 4
1) Обозначим скорость автомобиля через Х, тогда время, которое он затратит на поездку равно 180/Х.
Если скорость увеличить на 10 км/час, она станет равной (Х + 10), а время затраченное на поездку равно 180(Х+10)
2) Представив 15 минут как 1/4 часа можно написать уравнение:
180/Х - 180/(Х+10) = 1/4
Избавляемся от дроби, умножив все члены на 4Х(Х+10), получаем:
720Х + 7200 - 720Х = Х² + 10Х
Х² + 10Х -7200 = 0
3) Получается квадратное уравнение, решаем его. Находим дискриминант:
D = 10² + 4*7200 = 28900
√D = 170
Х₁ = (-10 - 170)/2 - отрицательное число, оно нам на подходит.
Х₂ = (-10 + 170)/2 = 80
ответ: 80 км/час