Найдите среднее арифметика ряда чисел, его моду и размах : 13 ; 15; 13; 12; 12; 13; 14; 15; 13; 12. 1) найдите абсолютную и относительную частоту для значений варианты, входящих в этот ряд. 2) составьте для этих статистических данных вариационый ряд. 3) представьте результат выборки в виде полигона частот.
х∈ (-∞, -2].
Объяснение:
Решить систему неравенств:
-х²+х+6<=0
5-3(x+1)>x
Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].
(х+10) период разложения фильтра от сигареты
с сзданием материалов ,разложение фильтра уменьшилось в 2 раза
(х+10)/2
и разница между периодами разложения будет 32 года
(х+10) - (х+10)/2=32
2х+20-х-10=64
х=54 года разлагается консервная банка
54+10=64 года разлагался фильтр
с созданием материалов ,разлагающихся под воздействием света ,разложение фильтра уменьшилось в 2 раза , 64:2=32 года теперь разлагается фильтр. Достижения науки!