Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
ответ: 1) думаю так
х-первое число
(х-2) - второе число
одз: x > 0
уравнение:
х·(х-2)=15
х²-2х-15 = 0
d=4-4·1·(-15)=4+60=64=8²
x₁ = - 3 < 0 не удовлетворяет одз
x₂ = 5 удовлетворяет одз
5 -первое число
5-2=3 - второе число
ответ: 5; 3
2) так
х м- одна сторона
(х-10) м - вторая сторона
6а = 600м²
одз: x > 0
уравнение:
х·(х-10)=600
х²-10х-600 = 0
d=100-4·1·(-600)=100+2400=2500=50²
x₁ = - 20 < 0 не удовлетворяет одз
x₂ = 30 удовлетворяет одз
30 м - одна сторона
30-10 = 20 м - вторая сторона
2·(30+20) = 100 м - периметр участка, которому должна равняться длина изгороди для дан�ого участка.
90м < 100м
ответ: 90м изгороди не хватит для данного участка.
3)так
количество линий связи равно с, числу сочетаний из n по 2:
n₁ = -7 < 0 отрицательное не удовлетворяет условию
n₂ = 8 удовлетворяет условию
ответ: 8.
4)
пусть x% - процент снижения в первый раз, тогда
х/2%=0,5х% - процент снижения во второй раз;
40: 100% · х% = 0,4х руб. - первая скидка
(40-0,4х) руб. - цена после первого снижения
(40-0,4х) : 100% · 0,5х% = (0,4-0,004х) · 0,5х = (0,2х-0,002х²) - вторая скидка
(40-0,4х) - (0,2х-0,002х²) = (40-0,6х-0,002х²) - цена после второго снижения
по условию цена товара после второго снижения равна 34р20к,
получаем уравнение:
40-0,6х-0,002х² = 34,2 (одз: 0%
0,002x²+0,6x-5,8=0
d=0,6²-4*0,002*5,8=0,3136=0,56²
x₁=10% удовлетворяет одз: 0%< 10%< 100%)
x₂=290% не удовлетворяет одз: 290%> 100%)
ответ: на 10%.
подробнее - на -
объяснение:
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.